A linear discriminant analysis framework based on random subspace for face recognition

نویسندگان

  • Xiaoxun Zhang
  • Yunde Jia
چکیده

Linear Discriminant Analysis (LDA) often suffers from the small sample size problem when dealing with high dimensional face data. Random subspace can effectively solve this problem by random sampling on face features. However, it remains a problem how to construct an optimal random subspace for discriminant analysis and perform the most efficient discriminant analysis on the constructed random subspace. In this paper, we propose a novel framework, Random Discriminant Analysis (RDA), to handle this problem. Under the most suitable situation of the principal subspace, the optimal reduced dimension of the face sample is discovered to construct a random subspace where all the discriminative information in the face space is distributed in the two principal subspaces of the within-class and between-class matrices. Then we apply Fisherface and Direct LDA respectively to the two principal subspaces for simultaneous discriminant analysis. The two sets of discriminant analysis features from dual principal subspaces are first combined at the feature level, and then all the random subspaces are further integrated at the decision level. With the discriminating information fusion at the two levels, our method can take full advantage of useful discriminant information in the face space. Extensive experiments on different face databases demonstrate its performance. Key Word: LDA, Random Subspace, Principal Subspace

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video-based face recognition in color space by graph-based discriminant analysis

Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...

متن کامل

Subspace Linear Discriminant Analysis for Face Recognition

In this paper we describe a holistic face recognition method based on subspace Linear Dis-criminant Analysis (LDA). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via Principal Component Analysis where the subspace dimension is carefully chosen, and then we use LDA to obtain a linear classiier in the subspace. The criterion we u...

متن کامل

Discriminant Subspace Analysis for Face Recognition with Small Number of Training Samples

In this paper, a framework of Discriminant Subspace Analysis (DSA) method is proposed to deal with the Small Sample Size (SSS) problem in face recognition area. Firstly, it is rigorously proven that the null space of the total covariance matrix, St, is useless for recognition. Therefore, a framework of Fisher discriminant analysis in a low-dimensional space is developed by projecting all the sa...

متن کامل

Discriminant Low-dimensional Subspace Analysis for Face Recognition with Small Number of Training Samples

In this paper, a framework of Discriminant Low-dimensional Subspace Analysis (DLSA) method is proposed to deal with the Small Sample Size (SSS) problem in face recognition area. Firstly, it is rigorously proven that the null space of the total covariance matrix, St , is useless for recognition. Therefore, a framework of Fisher discriminant analysis in a low-dimensional space is developed by pro...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2007